Sterilization is the treatment process that rids materials of possible contaminants, including microbial life, bacteria, fungi and viruses. In order to limit transmission of these contaminants, the medical industry requires certain levels of sterilization for all equipment. Common glass and steel medical products are often suited for a variety of sterilization processes, while polymer-based products may require specific sterilization methods. Using the incorrect method for a polymer-based material can damage its overall quality, degrade the polymer’s structural integrity, cause the polymer to produce harmful byproducts, and not fully sterilize the product itself.

It’s also important to remember that all polymer products are not the same, meaning polymers composed of differing molecules don’t behave the same way during sterilization. A method that’s perfect for one polymer might completely degrade another. Understanding polymer molecules and their properties is essential. A polymer molecule might be blended and processed in different ways to produce end products with varied material characteristics, such as tensile strength, elongation and color. Sterilization methods can directly affect blend properties. When making sterilization method recommendations for polymer products – like Lubrizol’s medical-grade thermoplastic polyurethanes (TPUs) – significant consideration must be taken.
Common Types of Sterilization*

Ethylene Oxide (EtO)
Sterilization via immersing the product in ethylene oxide gas in a chamber, then aerating it. This method enables sterilization for products with a low heat capacity, making it suitable for many plastics. EtO also works in conditions where radiation may be damaging. EtO is generally the preferred method for sterilizing TPUs, as there are no significant side effects recorded.

Hydrogen Peroxide
A type of chemical sterilization used primarily for temperature-sensitive material. The product is put in a sterilization chamber that is vacuumed and filled with hydrogen peroxide vapor and then aerated. It operates at low temperatures, although it can damage electronics. At high concentrations, hydrogen peroxide is a strong oxidizer, allowing it to eliminate contaminants within the material. One advantage of hydrogen peroxide over other chemical sterilization processes is the short cycle time required, due to high vapor concentrations.

E-Beam Radiation
Sterilization involving ionizing energy that has low penetration and uses a high dose rate to eliminate contaminants. An accelerator produces a beam of electrons that are focused on the product to be sterilized. As the beam passes through the product, energy from the electrons is absorbed. This extra energy in the product helps break down chemical and molecular bonds of the contaminants to fully sterilize the product.

Gamma Radiation
Sterilization using an isotope source, usually Cobalt-60, to produce ionizing energy that flows through the product. This energy causes cellular damage to the organisms, ridding the product of them. Capable of sterilizing high densities of materials, it produces strong rays with high penetrating power and low dose rate. Using radiation on aromatic TPUs can cause discoloration, which may fade over time but never disappear.

Dry Heat
Sterilization utilizing hot air, conducting heat through the equipment. Objects are heated to a steady temperature and held for a certain length of time, depending on the material. Dry heat sterilization is very effective, as it can reach all surfaces of an assembled product. However, some types of plastics cannot withstand the temperatures required, and some plastic discoloration may occur.

Autoclave
A type of steam sterilization common for equipment that can handle high temperatures. An autoclave is a device that subjects equipment to high-pressure saturated steam. Sterilization is achieved by denaturing the proteins and enzymes in the bacteria.

*Please note that the specific measurements in the descriptions above portray one cycle of the method, and several cycles may be required for complete sterilization.

Table: Common Types of Sterilization

<table>
<thead>
<tr>
<th>TPU Type</th>
<th>ETO</th>
<th>Peroxide</th>
<th>E-Beam</th>
<th>Gamma 25 kGy</th>
<th>Gamma 50 kGy</th>
<th>Dry Heat</th>
<th>Autoclave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbothane™ Aliphatic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Carbothane™ Aromatic</td>
<td>✓</td>
<td>✓</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Isoplast™ Aliphatic</td>
<td>✓</td>
<td>✓</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Pellethane™ Aromatic</td>
<td>✓</td>
<td>✓</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Tecobax™ Aliphatic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Tecoflex™ Aliphatic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tecophilic™ Aliphatic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tecoplast™ Aromatic</td>
<td>✓</td>
<td>✓</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Tecothane™ Aromatic</td>
<td>✓</td>
<td>✓</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
</tbody>
</table>

Key: ✓ Recommend | O May Cause Discoloration | X Do Not Recommend

For more information, visit Lubrizol.com/LifeSciences

The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind are made as to its accuracy, suitability for particular applications or the results to be obtained. The information offered is based on laboratory work with small-scale equipment and does not necessarily indicate and product performance or reproducibility. Formulations presented may not have been tested for stability and should be used only as a suggested starting point. Because of the variations in methods, conditions and equipment used commercially in processing these materials, no warranties or guarantees are made as to the suitability of the products for the applications described. Full scale testing and final product performance are the responsibility of the user. Lubrizol Advanced Materials, Inc., shall not be liable for any consequences or liabilities for any use or handling of any materials beyond Lubrizol Advanced Materials, Inc’s direct control. The SELLER MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, PERFORMANCE OR THE RESULTS TO BE OBTAINED. No representations or warranties of any kind are given or implied as to the accuracy or completeness of the information contained herein. The information is based on laboratory work with small-scale equipment and may not be applicable to commercial-scale processing.

Lubrizol Advanced Materials, Inc., is a wholly owned subsidiary of The Lubrizol Corporation.

©2019 The Lubrizol Corporation, all rights reserved. All marks are property of The Lubrizol Corporation.

LSP_TPU_STERIL 18-23422 MAR 2019