

TP-SA-009 Edition: August, 2010

Residual Ethyl Acetate and Cyclohexane Applicable Products: Carbopol[®]* Polymers, Pemulen[™]* Polymeric Emulsifiers and Noveon[®]* AA-1 Polycarbophil

Scope:

This procedure is for the analysis of residual solvent levels in Carbopol[®] polymers, Pemulen[™] polymeric emulsifiers or Noveon[®] AA-1 polycarbophil polymerized in ethyl acetate or ethyl acetate/cyclohexane mixtures.

Abstract:

The residual solvents are extracted from a sample of the polymer by shaking with methanol. A 2 μ l sample of the extract is injected onto a gas chromatograph column and the components separated. The responses of the solvent peaks are compared to the responses of prepared standards to determine the concentrations. Methyl ethyl ketone (MEK) is added to all samples and standards as an internal standard.

Safety Precautions:

- 1. Wear safety goggles and gloves and follow good laboratory practices.
- 2. Polymer dust is irritating to the respiratory passages and breathing it should be avoided.
- 3. Methanol, ethyl acetate, cyclohexane and methyl ethyl ketone (MEK) are all flammable and should be handled accordingly.
- 4. See all Material Safety Data Sheets (MSDS) for additional safety and handling information.

Interferences:

While no interferences have been recognized, any unknown component eluting at the same retention time as ethyl acetate, cyclohexane or the internal standard, methyl ethyl ketone, would influence the results. These interferences could be present in the polymer or the methanol used to extract.

Apparatus:

- 1. Gas chromatograph equipped with a packed column inlet and flame ionization detector.
- 2. Data processing station.
- 10' x 1/4" glass column packed with 1% SP-1000 on Carbopack B (60/80 mesh) – (see Special Instruction 1 for column preparation instructions).
- 4. Mechanical shaker.
- 5. 30 mL serum bottle.
- 6. 10 mL serum bottle.
- 7. Serum bottle rubber stopper.
- 8. Aluminum seals for serum bottles.
- 9. Manual aluminum seal crimper.
- 10. Automatic burette, Brinkmann Digital, 25 mL (for methanol addition).
- 11. Hamilton syringe, 10 ul.
- 12. Hamilton syringe, 50 ul.
- 13. Analytical balance capable of ±0.0001 gram accuracy.

Lubrizol Advanced Materials, Inc. / 9911 Brecksville Road, Cleveland, Ohio 44141-3247 / TEL: 800.379.5389 or 216.447.5000 The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind are made as to its accuracy, suitability for particular applications or the results to be obtained therefrom. The information is based on laboratory work with small-scale equipment and does not necessarily indicate end product performance. Because of the variations in methods, continos and Deceuse of the variations in methods, continos and Deceused the

For further information, please visit www.pharma.lubrizol.com Lubrizol Advanced Materials, Inc. is a wholly owned subsidiary of The Lubrizol Corporation

* Trademark owned by The Lubrizol Corporation

[©] Copyright 2010 / The Lubrizol Corporation

Reagents:

- 1. Methanol, ACS certified.
- 2. Ethyl acetate, ACS certified.
- 3. Methyl ethyl ketone, ACS certified.
- 4. Cyclohexane, ACS certified.

GC Conditions:

Detector temperature	250°C.
Injection port temperature	250°C.
Helium flow rate	33 cc/min
Hydrogen flow rate	50 cc/min
Air flow to flame	330 cc/min
Oven conditions	
Initial temperature	115°C.
Initial time	4 minutes
Ramp rate	6 deg/minute
Final temperature	175°C.
Final time	5 minutes

Calibration:

Primary Standard

- Accurately weigh a 10 mL serum bottle with rubber stopper. (All weights are to four decimal places.)
- 2. Add 5 mL methanol and insert the rubber stopper and reweigh.
- 3. Add 50 µl ethyl acetate through the rubber stopper and reweigh.
- 4. Add 50 μl cyclohexane through the rubber stopper and reweigh.
- 5. Mix thoroughly.

Working Standard

- 6. Accurately weigh a 30 mL serum bottle with rubber stopper.
- 7. Add 20 mL methanol, insert the rubber stopper and reweigh.
- 8. Add 10 μl methyl ethyl ketone through the rubber stopper and reweigh.
- Add 50 µl of the Primary Standard through the rubber stopper and reweigh. This is the Working Standard.
- 10. Inject 2 µl of the Working Standard onto the gas chromatograph column and analyze using the conditions noted in the GC Conditions section.
- 11. A calibration file can be established with the data processing station.

Procedure:

- 1. Weigh a 30 mL serum vial with a septum and record the weight (all weights are to four decimal places).
- 2. Add 50 mg (0.05 gram) of the polymer to the vial and reweigh. The sample size is not critical and sample weights of 0.04 to 0.06 gram are acceptable.
- 3. Using the automatic burette, dispense 20 mL of methanol to the vial, rubber stopper and reweigh.
- Add 10 µl MEK through the rubber stopper and record the weight. (The weight of 10 µl MEK is appropriately 0.0077 gram.) If the internal standard amount is significantly different, discard and begin preparation of another sample.
- 5. Place on the mechanical shaker for one half hour of vigorous shaking to extract the ethyl acetate and cyclohexane into the methanol.
- 6. Determine that the gas chromatograph is ready for the analysis. The operating conditions listed in the GC Conditions section should be entered.
- 7. Inject 2 μl of sample onto the gas chromatograph column.
- 8. Run time is 19 minutes.

Calculations:

No calculations are necessary if the data system is calibrated.

In the event automated peak detection and measurement are not used, the following calculations will yield the percent ethyl acetate and cyclohexane:

A. Calculation of response factor (RF) for ethyl acetate

 $\frac{\text{WTE}}{\text{WTT}} \times \frac{\text{WT P.S.}}{0.05} \text{X 100} = \text{WT\% ETAC in 0.05 g polymer}$

Where WTE = weight of ethyl acetate in Primary Standard WTT = total of weight of Primary Standard WT PS = weight of PS in Secondary Standard

RF= <u>AREA IS</u> X <u>WT% ETAC</u> AREA E WT IS/.0005

Where Area IS = area of Internal Standard peak Area E = area of ethyl acetate peak WT% ETAC = value from step 1 above WT IS = weight of Internal Standard in Working Standard Example:

WT% ETAC = $0.0505 \times 0.0444 \times 100$ 3.9832 0.05

WT% ETAC = 1.1258

RF = <u>6867</u> X <u>1.1258</u> 317 .0080/.0005

RF= 1.5242

B. Calculation of weight percent ethyl acetate in sample is calculated as follows:

WT% ETAC = RF X <u>AREA E2</u> X <u>WT IS2</u> X 100 AREA IS2 WT S

 Where
 RF = response factor for ethyl acetate from calculation in A

 AREA E2 = area ETAC in sample

 AREA IS2 = area Internal Standard in sample

 WT IS2 = weight Internal Standard in sample

 WT S = weight of sample

Example:

WT% ETAC = 1.5242 X <u>87</u> X <u>.0083</u> X 100 6902 .0564 WT% ETAC = 0.28

C. Repeat calculations for cyclohexane

Special Instructions:

 The 10' x 1/4" column packed with 1% SP-1000 on Carbopack B (60/80 mesh) is custom packed by Supelco (see Apparatus section). The column should be conditioned prior to its initial use. Connect the column to the gas chromatograph inlet only. Do not connect to the detector until conditioning is completed. Set the carrier gas flow to 33 cc/min and the oven temperature to 175°C. The column should be ready for use after a 24 hours conditioning period.

References:

 Current edition of the United States Pharmacopeia/National Formulary (USP/NF)