

Influence of Alcohol Content in **Dissolution Media on the Drug Release from Extended Release Tablets Formulated with Carbopol® Polymers**

Elena Draganoiu, Andrew Stansbrey, Hong Luo, and Vivek Dave Lubrizol Advanced Materials, Inc. 9911 Brecksville Rd., Cleveland, OH

OBJECTIVE

Evaluate the effect of alcohol content in dissolution media on drug release from extended release tablets formulated with Carbopol[®] polymers and investigate the risk of alcohol induced dose dumping.

METHODOLOGY

Materials

Guaifenesin (Delta Synthetic, Taiwan), Caffeine anhydrous granular 0.07/0.5 (BASF Corp., Florham Park, NJ), Metformin hydrochloride (Astroquim SA de CV, Ecatapec, Mexico), Carbopol[®] 971P NF polymer (Lubrizol Advanced Materials, Inc., Cleveland OH), Carbopol[®] 71G NF polymer (Lubrizol Advanced Materials, Inc., Cleveland OH), Emcocel[®] 50M microcrystalline cellulose (JRS Pharma LP, Patterson, NY), Microcrystalline cellulose PH-102 (Astroquim SA de CV, Ecatepec, Mexico), Lactose monohydrate (Kerry Bio-Science, Norwich, NY), Colloidal silicon dioxide (Astroquim SA de CV, Ecatepec, Mexico), Magnesium stearate (Ferro Corporation, Walton Hills, OH; Compañias el Fuerte SA de CV, Miguel Hidalgo, Mexico

Methods

Extended release tablets of various model drugs – guaifenesin (600 mg), caffeine (200 mg) and metformin hydrochloride (750 mg) – were formulated using Carbopol[®] 971P NF and/or 71G NF polymers as matrix forming excipients (10-20% w/w) – Table 1.

The drugs and excipients were granulated with deionized water. The dried granules were blended with the extragranular excipients and then compressed, using various standard-concave or capsule-shape punches to accommodate different tablet weights.

Tablets were evaluated for weight variation, mechanical strength, and friability (USP). Drug release was tested in USP apparatus I (100 rpm) or II (50 rpm) in 900 ml of 0.1N HCl solution containing ethanol (0, 20, or 40% v/v).

Extended Release Tablets

Ingredient (%w/w)	Caffeine	Metformin	Guaifenesin A	Guaifenesin B
Guaifenesin	-	-	75.0	75.0
Caffeine	75.0	-	-	-
Metformin hydrochloride	-	75.0	-	-
Carbopol [®] 971P NF polymer	10.0	9.0	10.0	20.0
Carbopol [®] 71G NF polymer*	-	7.0	-	-
Emcocel [®] 50M microcrystalline cellulose	4.5	-	5.0	4.5
Microcrystalline cellulose PH-102*	-	8.0	-	-
Lactose monohydrate	10.0	-	9.5	-
Colloidal silicon dioxide*	-	0.5	-	-
Magnesium stearate*	0.5	0.5	0.5	0.5
Total	100	100	100	100
Tablet weight (mg)	266.7	1000	800	800
Dose (mg)	200	750	600	600

*Added extragranularly

RESULTS

All formulations were characterized by acceptable tablet properties – Table 2.

Table 2. Physical Properties of Guaifenesin, Caffeine, and Metformin Tablets

Formulation	Weight (mg) (average ±SD)	Thickness (mm) (average ±SD)	Hardness (kP) (average ±SD)	Friability (%)
Caffeine	266.0±1.5	5.20±0.03	11.45±1.08	0.206
Metformin	1004.0±20.5	5.87±0.01	18.20±4.05	0.130
Guaifenesin A	800.6±5.5	7.38±0.03	16.45±0.80	0.093
Guaifenesin B	798.5±10.4	7.44±0.02	12.25±1.09	0.245

No risk of alcohol induced dose dumping was observed for the drugs/formulations tested, thus indicating the robustness of these extended release systems formulated with Carbopol[®] polymers.

Slower drug release was observed for caffeine and metformin hydrochloride tablets exposed to 20 or 40% v/v ethanol solution compared with exposure to 0.1N HCl – Fig.1 and 2. This can be explained by a change in drug solubility in the various media. The solubility of caffeine (1:60 water and 1:130 ethanol)¹ or metformin hydrochloride (1:2 water and 1:100 ethanol)¹ is lower in ethanol than in water.

In the case of guaifenesin, slightly slower drug release in the presence of alcohol was observed for tablets containing 10% w/w Carbopol[®] polymer – Fig 3. No alcohol effect was observed for the guaifenesin tablets formulated with 20% Carbopol® polymer.

Table 1. Composition (%w/w) of Guaifenesin 600 mg, Caffeine 200 mg, and Metformin 750 mg

100 S 90 80 70 E 40 20% 971P NF - 0.1N HCl w/ 20% ethanol 0 2 4 6 8 10 12 14 16 18 20 22 24 time (h)

CONCLUSIONS

In vitro dissolution testing of extended release tablets of guaifenesin, caffeine and metformin hydrochloride formulated with Carbopol[®] polymers (10 – 20% w/w) did not indicate any alcoholinduced dose-dumping effect. Similar or slower drug release was observed when tablets were exposed to 0.1N HCl or 0.1N HCl with up to 40% v/v alcohol content.

References:

1. Moffat, A., Osselton, N., and Widdop, B. (2004). Clarke's Analysis of Drugs and Poisons 3rd Ed., The Pharmaceutical Press, London.

Carbopol® is a registered trademark of The Lubrizol Corporation. Emcocel[®] is a registered trademark of JRS Pharma. © 2011 The Lubrizol Corporation

Figure 1. Influence of ethanol on the dissolution of caffeine (200 mg) tablets with 10% w/w Carbopol[®] 971P NF polymer in 0.1N HCI

Figure 2. Influence of ethanol on the dissolution of metformin hydrochloride (750 mg) tablets with 9% w/w Carbopol[®] 971P NF polymer and 7% w/w Carbopol[®] 71G NF polymer in 0.1N HCl.

Figure 3. Influence of ethanol on the dissolution of guaifenesin (600 mg) tablets with 10% or 20% w/w Carbopol[®] 971P NF polymer in 0.1N HCl.